
INTRODUCTION

Craig Parry
MAC Clinical Research
craigparry@macplc.com

1

SAS Programmers Need AI

2

PROGRAMMERS TO THE RESCUE
We have all been there, you’ve been handed a study, it was never your study to begin with, but you have been
brought in to “save the day”, effectively you’re on a rescue mission. Now, if I was given ample time to “tidy things up”,
I thoroughly enjoy a rescue study, for me it’s like cleaning your car, the end product is bliss. However, let’s be honest,
“ample time” and “rescue studies” never appear in the same sentence. This means it becomes less of a rescue
mission, more of like a mad scramble. We barely have time to digest the study or even understand the pre-existing
programs. This is where AI can step in, and assist. AI is that resource that does not get sick, does not acknowledge
stress, a resource which cannot be overburnt, so let’s (ab)use it.

FUNCTION VS. FORM
We all know that one programmer who prefers function over form, i.e., they want the program to run above anything
else, and I have met several of these programmers. In fact, I recall one programmer once telling me “Runners care
about finishing a race, not looking good while doing it!”. Maybe this is true, but if I can’t read your SAS® code, I’ll
never finish my work today! This is a great example of where AI can decipher a messy program in seconds. Let’s take
a look at an awful attempt at programming.

Code Written by a “Programmer”

proc sql noprint;
create table cars as
select *
from sashelp.cars
order by make, type;
create table cars_2 as select a.make, b.type, a.max_enginesize, b.total_enginesize
from (select make, max(enginesize) as max_enginesize from cars
group by make) as a left join
(select make, type, sum(enginesize) as total_enginesize
from cars group by make, type) as b on a.make=b.make;
quit;

Question to Asked to AI

Could you reformat this code to follow good programming practices without adding anything to the code?

Code Corrected by AI

proc sql noprint;
 create table cars as
 select *
 from sashelp.cars
 order by make, type;

 create table cars_2 as
 select a.make, b.type, a.max_enginesize, b.total_enginesize
 from
 (select make, max(enginesize) as max_enginesize
 from cars
 group by make
) as a
 left join
 (select make, type, sum(enginesize) as total_enginesize
 from cars
 group by make, type
) as b
 on a.make = b.make;
quit;

Figure 2: AI correcting code to ensure good programming practices are used.

Figure 2: AI correcting code to ensure good programming practices are used.

Sources:
(3) https://www.ox.ac.uk/news/features/how-
artificial-intelligence-shaping-medical-imaging
(4) https://medcitynews.com/2023/06/what-
every-health-system-cfo-needs-to-know-before-
using-ai-for-medical-coding/#:~:text=Fully%20
autonomous%20coding%20means%20
that,you%20apply%20across%20the%20board

Figure 1: Google trends of the term
AI over the last 12 months.

PP25

It is quite common to be assigned a study that
requires a little bit of a ‘rescue’ - however ‘ample
time’ and ‘rescue’ rarely appear in the same
sentence. This means that we often have little time
to digest the study and attempt to understand the
pre-existing programs. This is where AI can step in
and assist as it is a resource that doesn’t get sick,
stressed, or exhausted. Figure 2 highlights how AI
can quickly untangle complex code.

FUNCTION VS. FORM2

It is important to note that in every example above (figures 2, 3 and 4), I did
not include the rationale that the AI autogenerated. This rationale is the AI
both defending and explaining its changes. So, let’s revisit figure 2 where
we asked the AI to adjust the original code to follow good programming
practices and examine the rationale provided.

In figure 2B this is a great rationale as it is educating me on why the changes
were made and the importance of consistency and clarity within a team.

The code the AI generated included comments prefixed with step 1, step 2,
step 3, and step 4. This is because the rationale was written as steps to help
the user understand each change made.

In figure 2 AI has successfully corrected a poorly written piece of code
although it still resembles something similar to Salvador Dali’s artwork. You
can see a clock but struggle to comprehend why it’s melting. Our programs
should be universally understandable which is why we incorporate comments.
However, some programmers believe that no one will ever revisit their
code so there’s no need for comments. That’s a misconception as leaving
comments is essential in all instances and it’s virtually impossible to have

too many comments. So,
we encounter our second
challenge for AI to address:
dealing with the absence of
comments in code.

In figure 3 the code is well-structured, with helpful comments, and it’s easy to
comprehend. However, what remains unclear is why someone opted to overcomplicate
such a basic problem. I often come across intricate PROC SQL code, especially nested
PROC SQL, only to realise that this seemingly ‘advanced’ piece of code accomplishes
a fundamental task in just a few lines. Lengthy programs don’t necessarily imply poor
quality; the crucial point is that the code should be universally understandable.

AI can certainly streamline and help
make sense of messy code but is
this truly beneficial? Or is AI enabling
programmers to adopt a ‘quick fix’
mentality? For AI to be genuinely
effective, it should focus not just on
doing the job but also on educating the
user.

HYPERREALISM VS. SURREALISM COMPLICATED VS. SIMPLE

FEED IT ERRORS

RATIONALE THOUGHTS PLEASE3

8 The straightforward conclusion is that AI is more accessible than ever before.
If you are concerned about AI taking your job, then I would suggest that you
might be in the wrong profession and AI should not be your primary worry. I can
confidently state that AI has the potential to train and educate the next generation of
programmers while assisting the current cohort. It can help overcome language barriers
and alleviate some of the stress associated with problem-solving.

I recently conducted a brief survey on LinkedIn posing a simple question: ‘How will Artificial
Intelligence (AI) impact your job?’ The available answers were ‘Positively’ or ‘Negatively.’

The consensus suggests that AI is more
of an asset to the majority rather than
an ‘inevitable replacement’.

CONCLUSION

Scan QR code to read full paper

9

4

7

5

3

HYPERREALISM VS. SURREALISM
OK, AI has fixed someone’s poor attempt at programming, but it resembles something Salvador Dali painted, i.e., you
can see a clock but don’t understand why it is melting. Our programs need to be universally understood, this is why
we add comments, but some programmers think “no one will ever see this code again, I understand it, so I don’t need
comments!”. Wrong, comments are needed everywhere all the time, and no it is not possible to provide too many
comments. If you have written a comment and it’s a tad too long, I at the very least still understand what your code is
doing. It is easier to tell someone to write less than to write something. So, we have our second problem for AI to
solve, the dreaded uncommented code.

Question to Asked to AI

Could you add some comments to the code to help me understand?

Code Corrected by AI

proc sql noprint;

 /* Create a new table 'cars' from the dataset 'sashelp.cars'.
 This table sorts the cars based on their make and type. */
 create table cars as...

 /* Create a new table 'cars_2' that will contain:
 - The make of the car
 - The type of the car
 - The maximum engine size for each make
 - The total engine size for each make and type combination */
 create table cars_2 as...

 /* This subquery calculates the maximum engine size for each make.
 The result is aliased as 'a' for reference in the main query. */
 (select make, max(enginesize) as max_enginesize...

 /* This subquery calculates the total engine size for each make and type
 combination. The result is aliased as 'b' for reference in the main
 query. */
 (select make, type, sum(enginesize) as total_enginesize...

quit;

Figure 3: AI successfully adding comments to help us understand the code. Some code has been removed for ease
of reading.

COMPLICATED VS. SIMPLE
The code is structured well, we have some nice comments, we understand it, what we don’t understand is why they
decided to complicate such a basic problem. I often see some super elaborate PROC SQL code (i.e., nested PROC
SQL especially), and after time I soon realise this “advanced” bit of code is doing something basic but in only a few
lines. I am not sure where the idea of less code = good came from. Long programs do not necessarily indicate a bad
program, the key thing to remember for any bit of code, is code should be universally understood. I know what some
programmers may think, “but you don’t understand I did it in one procedure!?”. Well done you, gold star…AI could
you please knock it down.

Question to Asked to AI

Could you do the same task this code is doing without using PROC SQL?

Code Corrected by AI

/* Step 1: Sort the sashelp.cars dataset by make and type */
proc sort data=sashelp.cars out=cars;

Figure 3:
AI successfully adding comments to help us
understand the code. Some code has been
removed for ease of reading.

3

HYPERREALISM VS. SURREALISM
OK, AI has fixed someone’s poor attempt at programming, but it resembles something Salvador Dali painted, i.e., you
can see a clock but don’t understand why it is melting. Our programs need to be universally understood, this is why
we add comments, but some programmers think “no one will ever see this code again, I understand it, so I don’t need
comments!”. Wrong, comments are needed everywhere all the time, and no it is not possible to provide too many
comments. If you have written a comment and it’s a tad too long, I at the very least still understand what your code is
doing. It is easier to tell someone to write less than to write something. So, we have our second problem for AI to
solve, the dreaded uncommented code.

Question to Asked to AI

Could you add some comments to the code to help me understand?

Code Corrected by AI

proc sql noprint;

 /* Create a new table 'cars' from the dataset 'sashelp.cars'.
 This table sorts the cars based on their make and type. */
 create table cars as...

 /* Create a new table 'cars_2' that will contain:
 - The make of the car
 - The type of the car
 - The maximum engine size for each make
 - The total engine size for each make and type combination */
 create table cars_2 as...

 /* This subquery calculates the maximum engine size for each make.
 The result is aliased as 'a' for reference in the main query. */
 (select make, max(enginesize) as max_enginesize...

 /* This subquery calculates the total engine size for each make and type
 combination. The result is aliased as 'b' for reference in the main
 query. */
 (select make, type, sum(enginesize) as total_enginesize...

quit;

Figure 3: AI successfully adding comments to help us understand the code. Some code has been removed for ease
of reading.

COMPLICATED VS. SIMPLE
The code is structured well, we have some nice comments, we understand it, what we don’t understand is why they
decided to complicate such a basic problem. I often see some super elaborate PROC SQL code (i.e., nested PROC
SQL especially), and after time I soon realise this “advanced” bit of code is doing something basic but in only a few
lines. I am not sure where the idea of less code = good came from. Long programs do not necessarily indicate a bad
program, the key thing to remember for any bit of code, is code should be universally understood. I know what some
programmers may think, “but you don’t understand I did it in one procedure!?”. Well done you, gold star…AI could
you please knock it down.

Question to Asked to AI

Could you do the same task this code is doing without using PROC SQL?

Code Corrected by AI

/* Step 1: Sort the sashelp.cars dataset by make and type */
proc sort data=sashelp.cars out=cars;

4

 by make type;
run;

/* Step 2: Calculate max_enginesize for each make */
proc means data=cars noprint max;
 var enginesize;
 by make;
 output out=max_enginesize max(enginesize)=max_enginesize;
run;

/* Step 3: Calculate total_enginesize for each combination of make and type */
proc means data=cars noprint sum;
 var enginesize;
 by make type;
 output out=total_enginesize sum(enginesize)=total_enginesize;
run;

/* Step 4: Merge datasets together based on make */
data cars_2;
 merge max_enginesize (in=a) total_enginesize (in=b);
 by make;

 /* Only keep rows where there's a match from both datasets */
 if a and b;
run;

Figure 4: AI simplifying the overly complicated, much better.

LESSONS LEARNT
AI can clearly tidy programs up and help programmers understand a mess, but is this helpful? Or is AI allowing even
lazier programmers to follow the Richard Branson ethos, i.e., enabling lazy people to find the quickest solution. For AI
to truly be effective, it needs to educate the user not simply do their job.

RATIONALE THOUGHTS PLEASE
It is important to note, in every example above (figures 2, 3 and 4) I did not include the rationale that the AI
autogenerated. This rationale is AI both defending and explaining its changes. So, let’s revisit figure 2, where we
asked the AI to adjust the original code to follow good programming practices and see the rationale is provided.

Question to Asked to AI

Could you reformat this code to follow good programming practices without adding anything to the code?

Rationale for Changes Provided by AI

Here's a summary of what I've done:

1. Comments: Provided comments to give context to what each step or subquery
does.

2. Indentation: Used consistent indentation for better readability.
3. Spacing: Provided appropriate spacing between different parts of the SQL

statements.
4. Alignment: Aligned select, from, and group by clauses for better readability

of subqueries.

Remember that good programming practices often vary by team or organization, so
always consider the standards in your specific environment.

Figure 2B: Rationale provided by AI omitted from figure 2, which explains why the AI did what it did when improving
the original codes layout.

Figure 2B: Rationale provided by AI omitted
from figure 2, which explains why the AI did
what it did when improving the original codes
layout.

4

 by make type;
run;

/* Step 2: Calculate max_enginesize for each make */
proc means data=cars noprint max;
 var enginesize;
 by make;
 output out=max_enginesize max(enginesize)=max_enginesize;
run;

/* Step 3: Calculate total_enginesize for each combination of make and type */
proc means data=cars noprint sum;
 var enginesize;
 by make type;
 output out=total_enginesize sum(enginesize)=total_enginesize;
run;

/* Step 4: Merge datasets together based on make */
data cars_2;
 merge max_enginesize (in=a) total_enginesize (in=b);
 by make;

 /* Only keep rows where there's a match from both datasets */
 if a and b;
run;

Figure 4: AI simplifying the overly complicated, much better.

LESSONS LEARNT
AI can clearly tidy programs up and help programmers understand a mess, but is this helpful? Or is AI allowing even
lazier programmers to follow the Richard Branson ethos, i.e., enabling lazy people to find the quickest solution. For AI
to truly be effective, it needs to educate the user not simply do their job.

RATIONALE THOUGHTS PLEASE
It is important to note, in every example above (figures 2, 3 and 4) I did not include the rationale that the AI
autogenerated. This rationale is AI both defending and explaining its changes. So, let’s revisit figure 2, where we
asked the AI to adjust the original code to follow good programming practices and see the rationale is provided.

Question to Asked to AI

Could you reformat this code to follow good programming practices without adding anything to the code?

Rationale for Changes Provided by AI

Here's a summary of what I've done:

1. Comments: Provided comments to give context to what each step or subquery
does.

2. Indentation: Used consistent indentation for better readability.
3. Spacing: Provided appropriate spacing between different parts of the SQL

statements.
4. Alignment: Aligned select, from, and group by clauses for better readability

of subqueries.

Remember that good programming practices often vary by team or organization, so
always consider the standards in your specific environment.

Figure 2B: Rationale provided by AI omitted from figure 2, which explains why the AI did what it did when improving
the original codes layout.

SPOT THE DIFFERENCE
However, this overlooks the possible issue of a
language barrier. Rationale alone is not the best
way for AI to explain the differences between the
original code and the AI-corrected code, because
rationale assumes everyone’s understanding of
the English language is the same.

SAS® is a programming language and like any
language we see differences. For example, my
American counterpart and I both speak English
but there are differences, e.g., Haematology vs.
Hematology. These subtle differences are also
seen in programming and AI will have its own
preference when writing code. Could AI visually
highlight the differences without using
comments or rationale?

Let’s take the original program and ask the AI
to do something else. We still want to improve
the code, but we also want to highlight the
changes in a universally readable method, ideally
without writing out a comment. A visual and clear
indication of what the AI has changed.

Asking the AI “You know the code I originally
showed you, and then the improved code you
showed me, are you able to visually highlight the
differences?” returns an interesting result. Note,
the original code I am referring to is the code
seen in Figure 2. Asking the AI this returns an
interesting result, AI asking me a question “Would
you like a side-by-side comparison in this style
for the entire code?”. Yes, I 100% would!

Which leads us to figure 6. Now, there is an
obvious issue with the comparison as the original
code (seen in figure 2) went from 11 lines of code

to 20 lines, but the visual comparison mentions
the text [New Line] only once. Then again it
could be argued the AI did “visually show us the
differences” and paired with the rationale, I think
the AI did an OK job.

You must be precise when bringing your problem to
an AI. Take the date conversion prompt seen in in
section 7 in figure 7 as the question posed is rather
detailed:

• The input date format is mentioned i.e.,
DDMMMYYYY.

• SAS® is explicitly mentioned.
• We have also defined the input variable as

character.
• I also show the AI code I am attempting to use.

Without providing the AI with this level of detail, it
will typically get things wrong as seen in Figure 8.

I should be clear that the AI is not wrong, what it is
saying is correct.

However, my input date variable is of the format
DDMMMYYYY so using the format YYMMDD10
in the INPUT function would not work in my code.
The fault is with our question not the AI.

Additionally, AI often likes to provide additional
information without being asked to do so (figure
7). I never asked about adding a format, but it
told me about the FORMAT
statement anyway.

In contrast the AI would forget snippets of earlier
questions and a good example of this is my first
question in figure 2 clearly mentioning SAS®
programming. By the time I got to my question
in figure 7 the AI ignored this fact and began
showing me answers in different programming
languages.

One of the key benefits of AI, that it can think
for itself, can sometimes present unwanted
results.

6
Programmers experience programming coding
issues every day so let’s present the AI with a
very common issue: date conversion.

I want to convert my character date variable, of
the format DDMMMYYYY (e.g., 11AUG2023) into
a numeric variable but my code is not working.
Let’s see if the AI can help.

In figure 7 this is correct and the rationale
explains the reason why the error may have
appeared. But I did have to provide a very
precise question, which is not ideal.

7

Question to Asked to AI

Slightly off topic, I am trying to convert a character date variable in SAS of the format DDMMMYYYY, to be
numeric, using the following code:

date_n = put(date_c, yymmdd10.);

However, I am getting the following note in the log and the variable in my output dataset is not numeric:

NOTE 484-185: Format $YYMMDD was not found or could not be loaded.

Can you help me?

Answer Provided by AI

Certainly. The issue you're facing is due to the use of the put function, which is
trying to apply a numeric date format (yymmdd10.) to a character variable. In doing
so, SAS is interpreting it as if you're looking for a character date format, hence
the $YYMMDD in the log note. This is not what you want.

If you're trying to convert a character date variable of the format DDMMMYYYY to a
numeric date variable, you should be using the input function instead of put.

Here's the correct code:

 date_n = input(date_c, date9.);

The date9. informat reads the date in DDMMMYYYY format and converts it to a numeric
date variable that represents the number of days since January 1, 1960.

Figure 7: AI successfully providing a solution to a date conversion issue.

This is correct, and the rationale explains the reason I may have witnessed the error in the first place. But I did have
to provide a very precise question, which is not ideal.

PRECISION IS KEY
One thing is abundantly clear, you must be quite precise when posing your problem to AI. Take the date conversion
prompt above in figure 6, the question posed is rather detailed:

• The input date format is mentioned i.e., DDMMMYYYY.
• SAS® is explicitly mentioned.
• We have also defined the input variable as character..
• I also show the AI code I am attempting to use.

Without providing the AI with this level of detail, AI typically gets things wrong.

Question to Asked to AI

Slightly off topic, I am trying to convert a date variable however, I am getting the following note in the log and the
variable in my output dataset is not numeric:

NOTE 484-185: Format $YYMMDD was not found or could not be loaded.

Can you help me?

Answer Provided by AI

1. Converting a Character Date to a Numeric Date: If your date is stored as a

character string and you want to convert it to a SAS date (numeric), you'd
use the INPUT function.

Figure 7: AI successfully providing a solution to a date conversion issue.

Figure 4:
AI simplifying the overly complicated, much better.

6

Comparison:
[Added indent] create table cars as
[Added indent] select *

Would you like a side-by-side comparison in this style for the entire code?

Figure 5: Asking AI to visually illustrate the changes it makes to the code.

OK, I have the AI asking me a question. This may give us an interesting result, so let’s see how AI illustrates the
changes it made to the original code seen in figure 2. For ease of reading, I will only share the highlighted
comparison, please refer to figure 2 for the original and improved code.

Question to Asked to AI
Answer to the AI’s Question

Yes please, but could you also highlight any new lines introduced?

Answer Provided by AI

proc sql noprint;
[Indent] create table cars as
[Indent][Indent] select *
[Indent][Indent] from sashelp.cars
[Indent][Indent] order by make, type;
[New Line]
[Indent] create table cars_2 as
[Indent][Indent] select a.make, b.type, a.max_enginesize, b.total_enginesize
[Indent][Indent] from
[Indent][Indent][Indent] (select make, max(enginesize) as max_enginesize
[Indent][Indent][Indent] from cars
[Indent][Indent][Indent] group by make
[Indent][Indent][Indent]) as a
[Indent][Indent] left join
[Indent][Indent][Indent] (select make, type, sum(enginesize) as total_enginesize
[Indent][Indent][Indent] from cars
[Indent][Indent][Indent] group by make, type
[Indent][Indent][Indent]) as b
[Indent][Indent] on a.make = b.make;
quit;

Figure 6: Asking AI to show me its visual “spot the difference” attempt of the changes seen in figure 2 between the
original code and the AI-improved code.

This is not bad, there is the obvious issue with the comparison though, the original code went from 11 lines to 20
lines, but the above visual comparison mentions the text [New Line] only once. Regardless, AI did visually show us
the differences, pair this with the rationale and I think AI did quite well.

FEED IT ERRORS
OK, AI has successfully helped us correct some problematic code. We should reward it with some coding issues,
feed it an error or two. Programmers experience programming issues every day, I have certainly never stopped
seeing issues in over a decade. Maybe it is because we find ourselves in a SAS® programmer role, with little to no
experience and or support. Maybe we are too proud to ask for help, as this is accepting defeat. Let’s present AI with a
very common issue, date conversion.

The issue, I want to convert my character date variable, of the format DDMMMYYYY (e.g., 11AUG2023) into a
numeric variable but my code is not working, let’s see if AI can help.

Figure 6: Asking AI to show me its visual “spot the difference” attempt of the
changes seen in figure 2 between the original code and the AI-improved code.

In November 2022, the first ‘mainstream’ AI chatbot, Chat GPT was
launched and looking at Google trends, the term ‘AI’ saw a noticeable
spike around this time. We then saw a larger spike in April 2023 due to
the release of the next version of Chat GPT, version 4.0.

The trend is similar to the ‘3D’ movie fad that has appeared multiple
times, but ‘AI’ seems to carry more value and longevity as opposed to
being seen as a gimmick, and we are already seeing companies begin
to integrate AI into their systems. Examples include AI being used to
successfully process MRI images(3) and to assist with medical coding(4).

1

Paper PP25

SAS Programmers Need AI

Craig Parry, MAC Clinical Research / CraigYdwI Ltd., Swansea, Wales

ABSTRACT
When technology advances two things happen, people mention it in every presentation regardless of said technology
being relevant and or people worry this is the end of their job. The first point is very true, AI is referenced in almost
every presentation I have seen since 2016. But is the second point, redundancy, something to fear? It really depends
on how we embrace the advantages and control the disadvantages of AI. I see AI as the super modern version of ask
Jeeves, or for people born after the year 2000, Google search with a brain. I have been programming for over a
decade, slowly curating a personal portfolio of work, good macros, bad macros, hard to read macros. Yet even after a
decade I still find myself with a great idea but limited knowledge of how to implement such an idea, or I am posing a
question which sounds correct to me yet it returns something totally irrelevant. Maybe it is because I am a Welsh
programmer asking an English question? Anyway, the arrival of AI "chat bots" like Chat GPT are remarkable, we
should embrace them not fear them, albeit with a bit of caution. This poster explains how a SAS® programmer
coupled with AI can change industry norms, free up programmers to develop new industry norms and show how AI
can train the next generation of SAS programmers without taking resources away from billable work. Think of it as AI-
led training. The need for AI is far greater than the fear.

INTRODUCTION
Just a prerequisite, this paper heavily relies on the availability of AI chat bots like Chat GPT [1], and maybe you are
reading this in 2046, a time where AI chat bots may have been banned. If this is the case, you can consider this
paper as a sort of fan fiction for AI chat bots. Anyway, here is the intro. The year was 2022, November 2022 to be
precise, England saw their annual “Mozartfest” and Wales saw the Rugby Internationals begin. We also were
introduced to our first “mainstream” AI chat bot, Chat GPT [1]. Interestingly, looking at Google’s trends the term “AI”
saw a noticeable spike just after the release of Chat GPT on December 4th, 2022, and an even bigger spike in April
2023 when the newest version of Chat GPT, version 4.0 was released [2].

Figure 1: Google trends of the term AI over the last 12 months [2].

This trend initially reminded me of the “3D” movie fad that has appeared multiple times during my lifetime, but this
feels different, I think “AI” is here to stay, and we are already seeing companies begin to integrate AI into their
systems. Now, I don’t mean integrating AI into every PowerPoint presentation, but real use cases of AI in the clinical
industry. I have seen AI successfully process MRI images [3] and I have also seen AI assist with medical coding [4].
Don’t get me wrong there are implementations of AI in other industries some would deem less desirable, like in
Cornwall, England where AI is being used to catch bad drivers [5].

Anyway, I digress, how can programmers take advantage of this now? This paper explores this question by
explaining how AI can be used in real time, right out of the box. I am mindful nothing is perfect, so we will touch on
the obvious pitfalls and hopefully reassure you that programmers like you and I should not fear AI but embrace it.

7

Question to Asked to AI

Slightly off topic, I am trying to convert a character date variable in SAS of the format DDMMMYYYY, to be
numeric, using the following code:

date_n = put(date_c, yymmdd10.);

However, I am getting the following note in the log and the variable in my output dataset is not numeric:

NOTE 484-185: Format $YYMMDD was not found or could not be loaded.

Can you help me?

Answer Provided by AI

Certainly. The issue you're facing is due to the use of the put function, which is
trying to apply a numeric date format (yymmdd10.) to a character variable. In doing
so, SAS is interpreting it as if you're looking for a character date format, hence
the $YYMMDD in the log note. This is not what you want.

If you're trying to convert a character date variable of the format DDMMMYYYY to a
numeric date variable, you should be using the input function instead of put.

Here's the correct code:

 date_n = input(date_c, date9.);

The date9. informat reads the date in DDMMMYYYY format and converts it to a numeric
date variable that represents the number of days since January 1, 1960.

Figure 7: AI successfully providing a solution to a date conversion issue.

This is correct, and the rationale explains the reason I may have witnessed the error in the first place. But I did have
to provide a very precise question, which is not ideal.

PRECISION IS KEY
One thing is abundantly clear, you must be quite precise when posing your problem to AI. Take the date conversion
prompt above in figure 6, the question posed is rather detailed:

• The input date format is mentioned i.e., DDMMMYYYY.
• SAS® is explicitly mentioned.
• We have also defined the input variable as character..
• I also show the AI code I am attempting to use.

Without providing the AI with this level of detail, AI typically gets things wrong.

Question to Asked to AI

Slightly off topic, I am trying to convert a date variable however, I am getting the following note in the log and the
variable in my output dataset is not numeric:

NOTE 484-185: Format $YYMMDD was not found or could not be loaded.

Can you help me?

Answer Provided by AI

1. Converting a Character Date to a Numeric Date: If your date is stored as a

character string and you want to convert it to a SAS date (numeric), you'd
use the INPUT function.

8

2. Applying a Format to Display a Numeric Date: Once you have a numeric date,

you can use the FORMAT statement to control how it's displayed.

data want;
 set have;

 /* Convert character date to numeric date */
 date_num = INPUT(date_char, yymmdd10.);

 /* Apply format to the numeric date */
 FORMAT date_num YYMMDD10.;
run;

Figure 8: AI providing an attempt at a solution when I pose a vague question.

Now, I should be clear, the AI is not wrong, what it is saying is correct, however my input date variable is of the format
DDMMMYYYY so using the format YYMMDD10 in the INPUT function would not work in my code, the fault is with our
question not the AI.

Additionally, AI often likes to provide additional bits of wisdom without being asked to do so, like in the above
example in figure 7, I never asked it about adding a format, but it told me about the FORMAT statement anyway.

Conversely, the AI would completely forget snippets of earlier questions, a good example of this is my first question in
figure 2 clearly mentioned SAS® programming, but by the time I got to my question in figure 6, the AI ignored this fact
and began showing me answers in different programming languages.

Figure 9.1: AI presenting solution using visual basic (VB) formatting.

Figure 8: AI providing an attempt at a solution when I pose a vague question.

PRECISION IS KEY

