
CONCLUSION10

INTRODUCTION

Kaleb Mead
MAC Clinical Research
kalebmead@macplc.com

1

Figures are Basic(ally Overlooked)
PP24

REASONS FOR AVOIDING FIGURES 2

SCATTER PLOT
A scatter plot is a type of graph that displays individual data points on a two-
dimensional plane, often used to show the relationship between two continuous
variables. The data used for this example is the pre-packaged SAS® dataset detailing
car information from the SASHELP library within SAS®. It is a dataset listing models
of car, and their observed miles per gallon in a city (MPG_CITY), as well as their
horsepower (HORSEPOWER), and body type (TYPE).

The code in Figure 5 is again, very similar to the example code we initially saw in
Figure 1 and Figure 2, the additions/modifications are highlighted. We will look at the
modifications made that weren’t previously covered.

• (scatterplot) - specified that we will be using a scatter plot.

• (markerattrs) - opens the attributes for the markers used on the figure.

• (symbol = circlefilled) - swaps the symbol used for the markers out for a filled circle.

The output from these modifications is shown in Figure 6. More plot type examples
are shown in the paper associated.

PROC TEMPLATE
Within a PROC TEMPLATE procedure, there will be 4 sections to the figure structure.

1. DEFINE STATGRAPH – This is required to open a definition block for defining and
naming a graphics template. The name should be a clear reflection of the figure
(shown in Figure 1 as template_name).

2. BEGINGRAPH – This defines the outermost container for a graph template
that is defined with GTL-statements. All template definitions in the Graphics
Template Language must start with a BEGINGRAPH statement and end with an
ENDGRAPH statement.

3. LAYOUT – Layout blocks always begin with the LAYOUT keyword followed by
a keyword indicating the purpose of the layout. All layout blocks end with an
ENDLAYOUT statement. These statements function like do/end blocks in SAS®.

4. PLOT – The Plot statement is where the desired plot type will be defined, this
could be a SERIESPLOT, SCATTERPLOT, BOXPLOT, etc. (these would replace the
plot_type in Figure 1).

Colour vision deficiency (CVD), commonly known as colour-blindness,
affects about 8% of men and 0.5% of women. There are many types of
CVD but 98% people living with it have “red-green colour-blindness. They
have difficulty telling the difference between red and green. This is by far
the largest group we can easily improve accessibility for.

There is a lack of comprehensive resources and guidelines from industry
regulators and leaders to address the needs of people with CVD. CDISC,
the primary standards organisation in the clinical trials industry, provides
minimal accommodation for CVD, with only a brief mention of colour
considerations in their guidelines. The FDA only offers general guidance
on electronic submissions, cautioning against the use of colour due to
potential issues with printing or photocopying.

In Figure 25, on the left a colour palette
is shown containing greens, reds and
oranges. On the right is a simulation of
what that may look to someone with
protanope CVD. Here we see that for
someone with strong protanope CVD -
their reds, greens, and oranges seem to
blend together into shades of brown.

Now we will look at a scatter plot which
is similar to the one covered earlier. We
will be displaying several car makes and
their respective MSRP (manufacturer’s
suggested retail price) vs MPG in the city.

We will use ColorBrewer2.0 to decide on a
colour palette. There are four data classes
(Audi, Jaguar, Suzuki, and Volvo), the
data we are displaying is qualitative and
we need it to be usable for people with
CVD. With these options selected we are
given the colour palette we need to move
forward. This process is shown in Figure 29.

To use the colours we’ve now found,
some modifications must be made to the
“standard” scatter plot code.

• (%colormac) - this macro utility would
be put before the PROC TEMPLATE.
It was created to help SAS® users use
alternatives to SAS® inbuilt colour codes.
We will be using the RGB colour codes
now available.

The next two modifications would be
made as BEGINGRAPH options:

• (attrpriority = none) - this changes the
priority list that SAS® automatically
selects off and changes to NONE.

• (datacontrastcolors=(...)) - this allows us
to change the contrast colours of the
graphics element, such as lines and in
this case markers.

• (%rgb(166,206,227)) - this macro will be
called inside DATACONTRASTCOLORS,
and allows us to use the RGB codes we
found in ColorBrewer2.0, in SAS®. This is
repeated for all four colour codes.

The output, shown in Figure 31, from our
SAS® code is effectively displaying our
data while also ensuring it is accessible to
people with CVD.

To illustrate the difference this could make,
Figure 32 has the same output as Figure
31, but we have used colours that may
hinder someone with CVD. To simulate its
effect to wider audiences’, Figure 33 shows
how this may be seen with CVD.

PROC SGRENDER
To use the newly made template to output a figure - a PROC
SGRENDER procedure is used. This takes both the template
and the data we wish to use to create the figure. An example
can be seen in Figure 2.

First the data that is to be used
for the figure is defined (shown
as figure_data). Then the template
used for the figure is defined
(shown as template_name). These
together will generate our figure
in the output window.

BASICS OF CVD

CVD ILLUSTRATED

AN EXAMPLE IN SAS

PLOT TYPES

3

7

8

9

6

4

LAYOUTS
LAYOUT OPTIONS
The format for adding options is the same,
however, there is the addition of determining
how you want your output displayed and,
if there is more than one option, how they
interact together. This is shown in Figure 10.

In Figure 11 we see the layout types. Although
there are differences between the options
LATTICE and GRIDDED, as well as DATAPANEL
and DATALATTICE, these present similarly so
will be shown as the same in Figure 12.

5

AXIS OPTIONS
In Figures 13 and 14 we will look at some of the options
available within the layout section. The LAYOUT options we will
use is xaxisopts = (OPTION) which opens options for the x-axis,
there is also the y-axis version yaxisopts = (OPTION). These axis
options will introduce a lot more flexibility into our figures.

STYLE OPTIONS
For attribute options - it will depend on the category it would
fall into. There are several but in Figures 15 and 16 we will look
at the GRIDATTRS. GRIDATTRS falls into Line Options so we can
specify the lines colour, pattern and thickness.

Perceived complexity
Uncertainty in data interpretation
Lack of training and knowledge
Misconceptions about audience preference

8

Figure 12a: Example of an
OVERLAY layout option. [3]

Figure 12b: Example of a
GRIDDED layout option. [3]

Figure 12c: Example of a
DATALATTICE layout option. [3]

AXIS OPTIONS
Next, we will look at some of the options available within the layout section. While looking at the boxplots earlier we
covered the LAYOUT option xaxisopts = (OPTION), there is also the y-axis version yaxisopts = (OPTION). These
axis options will introduce a lot more flexibility into our figures.

GRIDDISPLAY = XX Main inputs for XX here is ON or OFF. This will specify whether the axis lines
are displayed.

GRIDATTRS = (XX = YY) Controls the style of the axis lines, if displayed. This follows the general rule
for attributes, which will be looked at momentarily.

LABEL = “XX” Specifies the axis label. Can either a string or work dynamically.
LABELATTRS = (XX = YY) Specifies the colour and font attributes of the axis label. Follows the general

rule for attributes, which will be looked at after.

TYPE = XX Specifies the type of axis wanted. Default is AUTO, which automatically

determines the axis type (best practice is to select the axis type manually).
Most of the time options LINEAR which uses the linear axis, and LOG which
uses the log axis are used. More are available.

Figure 13: On left is the AXIS OPTION code and on the right the description of each option.

Figure 14a: Example output with
GRIDDISPLAY = ON.

Figure 14b: Example output with LABEL =
“Label Text”.

Figure 14c: Example output
with TYPE = LOG.

STYLE OPTIONS
For attribute options, it will depend on the category it would fall into. There are several but we will look at the ones
covered. GRIDATTRS falls into Line Options, we can specify the lines colour, pattern, and thickness.

LINEATTRS = (COLOR = XX) Specifies colour. XX can be given as a valid colour name, such as
RED, or a colour code, such as CXFF0000 or #FF0000.

LINEATTRS = (PATTERN = XX) Specifies the line pattern. XX can be given as the pattern number or as
the pattern name (Solid, ShortDash, LongDash, etc.)

LINEATTRS = (THICKNESS = XX) Specifies the thickness of the line. XX must be given as the desired
thickness and the associated dimension (0.2in, 3mm, 10pct, etc.)

Figure 15: On left is the STYLE OPTION code and on the right the description of each option.

Commented [MD75]: Would ", more are available" be better

9

Figure 16a: Example of output
with GRIDATTRS = (COLOR =
RED).

Figure 16b: Example of output
with GRIDATTRS = (PATTERN =
4).

Figure 16c: Example of output with
GRIDATTRS = (THICKNESS =
1pct).

Whereas LABELATTRS fall into the category of Text Options, where we can specify the colour, font family, size,
style, and weight of the text.

TEXTATTRS = (COLOR = XX) Specifies the colour. XX can be given as a valid colour name, such as
RED, or a colour code, such as CXFF0000 or #FF0000.

TEXTATTRS = (FAMILY = “XX”) Specifies the font used. XX can be any of the fonts available in SAS®
(Arial, Helvetica, etc.).

TEXTATTRS = (SIZE = XX) Specifies the font size of the text (14).
TEXTATTRS = (STYLE = XX) Specifies the style of the text (NORMAL or ITALIC).
TEXTATTRS = (WEIGHT = XX) Specifies the style of the text (NORMAL or BOLD).

Figure 17: On left is the STYLE OPTION code and on the right the description of each option.

Figure 18a: Example of output with
LABELATTRS = (COLOR = RED
FAMILY = “HELVETICA”).

Figure 18b: Example of output with
LABELATTRS = (SIZE = 18
STYLE = ITALIC).

Figure 18c: Example of output with
LABELATTRS = (WEIGHT =
BOLD).

PLOT OPTIONS
As previously covered, here we can specify the plot we wish to create. As we have already looked at a few types I
won’t cover anymore, however there are many more types of figures you can create, depending on the data you have
and what you wish to display.

Before looking at the options available, we will look at what else can be done here. First note how in Figure 19,
multiple plots can be defined in the same PROC TEMPLATE. Depending on how the PROC TEMPLATE is set up,
these can be overlayed on the same axes or can be put on separate axes next to each other, as seen in Figure 12.

Figure 19: Example code showing how multiple plots can be in same PROC TEMPLATE.

PLOT_TYPE1 x = X_VARIABLE y = Y_VARIABLE / OPTION1

 OPTION2;

PLOT_TYPE2 x = X_VARIABLE y = Y_VARIABLE / OPTION3

 OPTION4;

Commented [MD76]: comma?

7

The code in Figure 7 is again, very similar to the example code we initially saw in Figure 1 and Figure 2, with any
modifications highlighted. The highlighted section marked as “1” is as follows:

• (xaxisopts) – opens options for the x-axis.
• (offsetmin = 0.1) – this creates some space at lower end of the axis selected, in this case it reserves 10% of

the space on the left of the graph.
• (offsetmax = 0.1) – this creates some space at upper end of the axis selected, in this case it reserves 10% of

the space on the right of the graph.
The highlighted section marked as “2” has modifications:

• (boxplot) - specified that we will be using a box plot.
• (datalabel = make) - the outliers in the output will be denoted by their make.
• (spread = true) - specifies that outliers with the same value are spread out to avoid overlap.

The highlighted section marked as “3” has modifications:
• (label type = “Vehicle Type”) – Assigns the label “Vehicle Type” to the variable TYPE, so the output shows

this in place of “type”.

ADVANCED TECHNIQUES
While covering basics of GTL programming we utilised some of the modifications we can implement to enhance the
output we want to produce. We will now build on these to further customise our figures but note that we will not cover
every eventuality as these options are quite extensive.

BEGINGRAPH OPTIONS
The format for adding these options is shown in Figure 9.

Figure 9: Example code for BEGINGRAPH options.

As with each section, there are a range of options you could use, but there are few for this section that you will use
regularly aside from defining the output border or selecting the dimensions for the figure.
To define a border, you use border = true or if a border is not wanted border = false
To select the dimensions of the figure you use designheight = XXXpx
 designwidth = ZZZpx
where XXX is the desired pixel height and ZZZ is the desired pixel width.

LAYOUT OPTIONS
The format for adding options here is the same, however there is the addition of determining how you want your
output displayed, and if there is more than one option, how they interact together. This is shown in Figure 10.

Figure 10: Example code for LAYOUT options.

First, we will look at the layout type. These will decide how the plots you create will be displayed. Although there are
differences between the options LATTICE and GRIDDED, as well as DATAPANEL and DATALATTICE, these
present similarly so will be shown as the same in Figure 12.

OVERLAY One plot per page

LATTICE Multiple Grouped Plots per page
independent of data values GRIDDED

DATAPANEL Multiple Grouped Plots per page with
shared axes DATALATTICE

Figure 11: On left is the LAYOUT OPTION code and on the right the description of each option.

begingraph / OPTION1

 OPTION2 ;

layout LAYOUT_TYPE / OPTION1

 OPTION2 ;

Commented [MD70]: and Figure 2 for SGRENDER?

Commented [CP71]: Same comment as earlier, label the
chunks figure 7.

Commented [MD72]: "when a border is not wanted". As
wording may make people think it still defines a border

Commented [MD73]: "is"

Commented [MD74]: "as well as" might be better, as
opposed to "and" being there 3 times.

Figure 11

On left is the LAYOUT OPTION code and on the right the description of each option.

7

The code in Figure 7 is again, very similar to the example code we initially saw in Figure 1 and Figure 2, with any
modifications highlighted. The highlighted section marked as “1” is as follows:

• (xaxisopts) – opens options for the x-axis.
• (offsetmin = 0.1) – this creates some space at lower end of the axis selected, in this case it reserves 10% of

the space on the left of the graph.
• (offsetmax = 0.1) – this creates some space at upper end of the axis selected, in this case it reserves 10% of

the space on the right of the graph.
The highlighted section marked as “2” has modifications:

• (boxplot) - specified that we will be using a box plot.
• (datalabel = make) - the outliers in the output will be denoted by their make.
• (spread = true) - specifies that outliers with the same value are spread out to avoid overlap.

The highlighted section marked as “3” has modifications:
• (label type = “Vehicle Type”) – Assigns the label “Vehicle Type” to the variable TYPE, so the output shows

this in place of “type”.

ADVANCED TECHNIQUES
While covering basics of GTL programming we utilised some of the modifications we can implement to enhance the
output we want to produce. We will now build on these to further customise our figures but note that we will not cover
every eventuality as these options are quite extensive.

BEGINGRAPH OPTIONS
The format for adding these options is shown in Figure 9.

Figure 9: Example code for BEGINGRAPH options.

As with each section, there are a range of options you could use, but there are few for this section that you will use
regularly aside from defining the output border or selecting the dimensions for the figure.
To define a border, you use border = true or if a border is not wanted border = false
To select the dimensions of the figure you use designheight = XXXpx
 designwidth = ZZZpx
where XXX is the desired pixel height and ZZZ is the desired pixel width.

LAYOUT OPTIONS
The format for adding options here is the same, however there is the addition of determining how you want your
output displayed, and if there is more than one option, how they interact together. This is shown in Figure 10.

Figure 10: Example code for LAYOUT options.

First, we will look at the layout type. These will decide how the plots you create will be displayed. Although there are
differences between the options LATTICE and GRIDDED, as well as DATAPANEL and DATALATTICE, these
present similarly so will be shown as the same in Figure 12.

OVERLAY One plot per page

LATTICE Multiple Grouped Plots per page
independent of data values GRIDDED

DATAPANEL Multiple Grouped Plots per page with
shared axes DATALATTICE

Figure 11: On left is the LAYOUT OPTION code and on the right the description of each option.

begingraph / OPTION1

 OPTION2 ;

layout LAYOUT_TYPE / OPTION1

 OPTION2 ;

Commented [MD70]: and Figure 2 for SGRENDER?

Commented [CP71]: Same comment as earlier, label the
chunks figure 7.

Commented [MD72]: "when a border is not wanted". As
wording may make people think it still defines a border

Commented [MD73]: "is"

Commented [MD74]: "as well as" might be better, as
opposed to "and" being there 3 times.

Figure 10

Example code for LAYOUT options

Figure 12

8

Figure 12a: Example of an
OVERLAY layout option. [3]

Figure 12b: Example of a
GRIDDED layout option. [3]

Figure 12c: Example of a
DATALATTICE layout option. [3]

AXIS OPTIONS
Next, we will look at some of the options available within the layout section. While looking at the boxplots earlier we
covered the LAYOUT option xaxisopts = (OPTION), there is also the y-axis version yaxisopts = (OPTION). These
axis options will introduce a lot more flexibility into our figures.

GRIDDISPLAY = XX Main inputs for XX here is ON or OFF. This will specify whether the axis lines
are displayed.

GRIDATTRS = (XX = YY) Controls the style of the axis lines, if displayed. This follows the general rule
for attributes, which will be looked at momentarily.

LABEL = “XX” Specifies the axis label. Can either a string or work dynamically.
LABELATTRS = (XX = YY) Specifies the colour and font attributes of the axis label. Follows the general

rule for attributes, which will be looked at after.

TYPE = XX Specifies the type of axis wanted. Default is AUTO, which automatically

determines the axis type (best practice is to select the axis type manually).
Most of the time options LINEAR which uses the linear axis, and LOG which
uses the log axis are used. More are available.

Figure 13: On left is the AXIS OPTION code and on the right the description of each option.

Figure 14a: Example output with
GRIDDISPLAY = ON.

Figure 14b: Example output with LABEL =
“Label Text”.

Figure 14c: Example output
with TYPE = LOG.

STYLE OPTIONS
For attribute options, it will depend on the category it would fall into. There are several but we will look at the ones
covered. GRIDATTRS falls into Line Options, we can specify the lines colour, pattern, and thickness.

LINEATTRS = (COLOR = XX) Specifies colour. XX can be given as a valid colour name, such as
RED, or a colour code, such as CXFF0000 or #FF0000.

LINEATTRS = (PATTERN = XX) Specifies the line pattern. XX can be given as the pattern number or as
the pattern name (Solid, ShortDash, LongDash, etc.)

LINEATTRS = (THICKNESS = XX) Specifies the thickness of the line. XX must be given as the desired
thickness and the associated dimension (0.2in, 3mm, 10pct, etc.)

Figure 15: On left is the STYLE OPTION code and on the right the description of each option.

Commented [MD75]: Would ", more are available" be better

Example of an OVERLAY
layout option.

8

Figure 12a: Example of an
OVERLAY layout option. [3]

Figure 12b: Example of a
GRIDDED layout option. [3]

Figure 12c: Example of a
DATALATTICE layout option. [3]

AXIS OPTIONS
Next, we will look at some of the options available within the layout section. While looking at the boxplots earlier we
covered the LAYOUT option xaxisopts = (OPTION), there is also the y-axis version yaxisopts = (OPTION). These
axis options will introduce a lot more flexibility into our figures.

GRIDDISPLAY = XX Main inputs for XX here is ON or OFF. This will specify whether the axis lines
are displayed.

GRIDATTRS = (XX = YY) Controls the style of the axis lines, if displayed. This follows the general rule
for attributes, which will be looked at momentarily.

LABEL = “XX” Specifies the axis label. Can either a string or work dynamically.
LABELATTRS = (XX = YY) Specifies the colour and font attributes of the axis label. Follows the general

rule for attributes, which will be looked at after.

TYPE = XX Specifies the type of axis wanted. Default is AUTO, which automatically

determines the axis type (best practice is to select the axis type manually).
Most of the time options LINEAR which uses the linear axis, and LOG which
uses the log axis are used. More are available.

Figure 13: On left is the AXIS OPTION code and on the right the description of each option.

Figure 14a: Example output with
GRIDDISPLAY = ON.

Figure 14b: Example output with LABEL =
“Label Text”.

Figure 14c: Example output
with TYPE = LOG.

STYLE OPTIONS
For attribute options, it will depend on the category it would fall into. There are several but we will look at the ones
covered. GRIDATTRS falls into Line Options, we can specify the lines colour, pattern, and thickness.

LINEATTRS = (COLOR = XX) Specifies colour. XX can be given as a valid colour name, such as
RED, or a colour code, such as CXFF0000 or #FF0000.

LINEATTRS = (PATTERN = XX) Specifies the line pattern. XX can be given as the pattern number or as
the pattern name (Solid, ShortDash, LongDash, etc.)

LINEATTRS = (THICKNESS = XX) Specifies the thickness of the line. XX must be given as the desired
thickness and the associated dimension (0.2in, 3mm, 10pct, etc.)

Figure 15: On left is the STYLE OPTION code and on the right the description of each option.

Commented [MD75]: Would ", more are available" be better

Example of a GRIDDED
layout option.

8

Figure 12a: Example of an
OVERLAY layout option. [3]

Figure 12b: Example of a
GRIDDED layout option. [3]

Figure 12c: Example of a
DATALATTICE layout option. [3]

AXIS OPTIONS
Next, we will look at some of the options available within the layout section. While looking at the boxplots earlier we
covered the LAYOUT option xaxisopts = (OPTION), there is also the y-axis version yaxisopts = (OPTION). These
axis options will introduce a lot more flexibility into our figures.

GRIDDISPLAY = XX Main inputs for XX here is ON or OFF. This will specify whether the axis lines
are displayed.

GRIDATTRS = (XX = YY) Controls the style of the axis lines, if displayed. This follows the general rule
for attributes, which will be looked at momentarily.

LABEL = “XX” Specifies the axis label. Can either a string or work dynamically.
LABELATTRS = (XX = YY) Specifies the colour and font attributes of the axis label. Follows the general

rule for attributes, which will be looked at after.

TYPE = XX Specifies the type of axis wanted. Default is AUTO, which automatically

determines the axis type (best practice is to select the axis type manually).
Most of the time options LINEAR which uses the linear axis, and LOG which
uses the log axis are used. More are available.

Figure 13: On left is the AXIS OPTION code and on the right the description of each option.

Figure 14a: Example output with
GRIDDISPLAY = ON.

Figure 14b: Example output with LABEL =
“Label Text”.

Figure 14c: Example output
with TYPE = LOG.

STYLE OPTIONS
For attribute options, it will depend on the category it would fall into. There are several but we will look at the ones
covered. GRIDATTRS falls into Line Options, we can specify the lines colour, pattern, and thickness.

LINEATTRS = (COLOR = XX) Specifies colour. XX can be given as a valid colour name, such as
RED, or a colour code, such as CXFF0000 or #FF0000.

LINEATTRS = (PATTERN = XX) Specifies the line pattern. XX can be given as the pattern number or as
the pattern name (Solid, ShortDash, LongDash, etc.)

LINEATTRS = (THICKNESS = XX) Specifies the thickness of the line. XX must be given as the desired
thickness and the associated dimension (0.2in, 3mm, 10pct, etc.)

Figure 15: On left is the STYLE OPTION code and on the right the description of each option.

Commented [MD75]: Would ", more are available" be better

Example of a DATALATTICE
layout option.

Figure 15

Figure 16

12

Figure 24: The series plot with the legend options added to the updated code.

ACCESSIBILITY
THE BASICS OF CVD
Colour vision deficiency (CVD), commonly known as colour-blindness, affects about 8% of men and 0.5% of women.
[4] There are many types of CVD with varying degrees of effect, from issues distinguishing shades of a colour, to
seeing no colour at all (although the latter is incredibly rare). 98% of these people dealing with CVD have “red-green
colour-blindness”, which is actually two different types that present similarly (Deutan and Protan). [5] These
individuals have trouble telling the difference between red and green. Although there are other types, this is by far the
largest group we can easily improve accessibility for.

In Figure 25, on the left a colour palette is shown containing greens, reds and oranges. On the right is a simulation of
what that may look to someone with protanope CVD.

Figure 25: Comparison of colours for normal vision vs a protanope simulation. [6]

Here we see that for someone with strong protanope CVD their reds, greens, and oranges seem to blend together
into shades of brown. This is a good illustration of how even the commonly used red vs green, as a depiction of bad
vs good, isn’t a viable option for people with CVD.

However, when looking further at how the colours used in outputs may differ from someone without CVD we see the
issue is more complex than just not mixing reds and greens.

Commented [MM91]: Add page break before this title so it
appears on same page as related text? (if paper isn't changing
anymore to affect layout)

Commented [MD92]: Have this on the same page as
following paragraph

Commented [MD93]: Do you need to explain CVD in
header, or as it is the first part of the section, it is fine?

Commented [KM94R93]: Im happy with it as it is

Commented [MD95]: comma

Commented [CP96]: I like this figure, but you go from
talking about colour blindness to then this figure with very
little introduction. Could you say something in the previous
paragraph? You may just need to move the paragraphs
around. The next paragraphs kind of introduces the figure.

Commented [MD97]: Reword to make flow better? "strong
protanope CVD the reds, greens, and oranges" doesn't seem
to fit too well to me

Commented [MD98]: ", as a depiction of bad vs good, "

Figure 25

14

A commonly referenced resource for picking out suitable colour palettes was ColorBrewer2.0. [13] Here you have the
ability to pick out different characteristics of the data you intend to display, select to only show “colorblind safe”
palettes, and you are given a colour palette that is deemed suitable for your use. ColorBrewer2.0 has its limitations
but is a useful resource, nonetheless.

Figure 28: ColorBrewer2.0 showcase. [13]

If you already have a figure and wanted to check if it had any issues for people with CVD then resources are
available for that as well, one such being color-blindness.com. Here you can use their Coblis simulator to input an
image file and using different filters, decide whether it would be suitable for use or is too confusing for a person with
CVD. [8]

AN EXAMPLE IN SAS®
We shall look at a scatter plot, similar to the one covered earlier. Here we will be displaying the MSRP
(manufacturer’s suggested retail price) vs its MPG in the city of cars by its make.

In the data we are using we have four car makes: Audi, Jaguar, Suzuki, and Volvo. So, we shall go to ColorBrewer2.0
[13] and select our options. There are four data classes (makes), the data we are displaying is qualitative, and we
need it to be usable for people with CVD (here shown as colourblind safe). With these options selected we are given
the colour palette we need to move forward.

Figure 29 ColorBrewer2.0 for this specific instance. [13]

Commented [MD107]: you select a CVD safe palette and
they give you a colour palette? Not sure I follow

Commented [MD108]: Add (R) symbol

Commented [MD109]: comma

Commented [CP110]: Reference

16

Figure 31: Figure output using the given colours and code.

The output, shown in Figure 31, from our SAS® code is effectively displaying our data while also ensuring it is
accessible to people with CVD.

Figure 32: Figure output using colours that may
confuse someone with CVD.

Figure 33: Simulation of how Figure 32 may look for
someone with CVD. [8]

To illustrate the difference this could make, Figure 32 has the same output as Figure 31, but we’ve used colours that
may hinder someone with CVD. To simulate its affect to wider audiences’, Figure 33 shows how this may be seen
with CVD.

CONCLUSION
Figures are incredible mediums for communicating complex results from data, so I hope that this paper can shed light
on the ease at which these can be introduced to newcomers and their skills developed.

However, even if the use of figures becomes widespread, this will be a hollow achievement if they are inaccessible to
a notable chunk of the population. I hope by covering the issues this can cause for these individuals with CVD, the
ease at which this can be rectified, and the lack of current coverage by the regulatory bodies within the industry, that
the industry can work together to create guidelines in the future that will make figure production and utilisation more
accessible for everyone.

Commented [MD118]: Add (R) symbol

Commented [MD119]: Change to "look"

Commented [MD120]: comma

Commented [MD121]: "so I hope" or "so the hope is"?

Commented [MM122]: change to 'and develop their skills.'
Or leave as is, might be how I'm reading it.

Commented [MD123]: "I hope,", "The hope is,"

Commented [MD124]: is it worth noting by "these
individuals" you mean "people with CVD"

Commented [MD125]: Doesn't flow very well. IS it possible
to reword? Maybe make 2 sentences?

16

Figure 31: Figure output using the given colours and code.

The output, shown in Figure 31, from our SAS® code is effectively displaying our data while also ensuring it is
accessible to people with CVD.

Figure 32: Figure output using colours that may
confuse someone with CVD.

Figure 33: Simulation of how Figure 32 may look for
someone with CVD. [8]

To illustrate the difference this could make, Figure 32 has the same output as Figure 31, but we’ve used colours that
may hinder someone with CVD. To simulate its affect to wider audiences’, Figure 33 shows how this may be seen
with CVD.

CONCLUSION
Figures are incredible mediums for communicating complex results from data, so I hope that this paper can shed light
on the ease at which these can be introduced to newcomers and their skills developed.

However, even if the use of figures becomes widespread, this will be a hollow achievement if they are inaccessible to
a notable chunk of the population. I hope by covering the issues this can cause for these individuals with CVD, the
ease at which this can be rectified, and the lack of current coverage by the regulatory bodies within the industry, that
the industry can work together to create guidelines in the future that will make figure production and utilisation more
accessible for everyone.

Commented [MD118]: Add (R) symbol

Commented [MD119]: Change to "look"

Commented [MD120]: comma

Commented [MD121]: "so I hope" or "so the hope is"?

Commented [MM122]: change to 'and develop their skills.'
Or leave as is, might be how I'm reading it.

Commented [MD123]: "I hope,", "The hope is,"

Commented [MD124]: is it worth noting by "these
individuals" you mean "people with CVD"

Commented [MD125]: Doesn't flow very well. IS it possible
to reword? Maybe make 2 sentences?

16

Figure 31: Figure output using the given colours and code.

The output, shown in Figure 31, from our SAS® code is effectively displaying our data while also ensuring it is
accessible to people with CVD.

Figure 32: Figure output using colours that may
confuse someone with CVD.

Figure 33: Simulation of how Figure 32 may look for
someone with CVD. [8]

To illustrate the difference this could make, Figure 32 has the same output as Figure 31, but we’ve used colours that
may hinder someone with CVD. To simulate its affect to wider audiences’, Figure 33 shows how this may be seen
with CVD.

CONCLUSION
Figures are incredible mediums for communicating complex results from data, so I hope that this paper can shed light
on the ease at which these can be introduced to newcomers and their skills developed.

However, even if the use of figures becomes widespread, this will be a hollow achievement if they are inaccessible to
a notable chunk of the population. I hope by covering the issues this can cause for these individuals with CVD, the
ease at which this can be rectified, and the lack of current coverage by the regulatory bodies within the industry, that
the industry can work together to create guidelines in the future that will make figure production and utilisation more
accessible for everyone.

Commented [MD118]: Add (R) symbol

Commented [MD119]: Change to "look"

Commented [MD120]: comma

Commented [MD121]: "so I hope" or "so the hope is"?

Commented [MM122]: change to 'and develop their skills.'
Or leave as is, might be how I'm reading it.

Commented [MD123]: "I hope,", "The hope is,"

Commented [MD124]: is it worth noting by "these
individuals" you mean "people with CVD"

Commented [MD125]: Doesn't flow very well. IS it possible
to reword? Maybe make 2 sentences? Figures are incredible mediums for communicating complex results from

data and can be adopted by newcomers with ease. However, even if the
use of figures becomes widespread, this will be a hollow achievement if
they are inaccessible to a large percentage of the population.

By shedding light on the challenges this
presents to individuals with CVD and
demonstrating how easily these issues can be
resolved - we hope to encourage collaborative
efforts within the industry to establish future
guidelines that will ensure figures are produced
and utilized in a manner that is accessible to all.

Figure 29

Figure 31 Figure 32 Figure 33

AXIS AND STYLE OPTIONS

Figures play an important role in communicating
clinical trial data. They convey complex information
in a visually intuitive manner and enable anyone to
understand critical insights effectively. But figures are
often undervalued and there is a hesitancy among
SAS® programmers to fully incorporate them.

We want to clearly explain the process of
creating figures using SAS® and to empower SAS®
programmers to adopt a more conscious and
inclusive approach to figure development.

BASIC FIGURE CREATION

AC C ES S I B I L I T Y

Example of output with
GRIDATTRS = (COLOR = RED).

On left is the STYLE OPTION code and on the right the description of each option.

Figure 13

On left is the AXIS OPTION code and on the right the description of each option.

Figure output using the given colours and code.

ColorBrewer2.0 for this specific instance.

Comparison of colours for normal vision vs a protanope simulation.

Figure output using colours that may confuse someone with CVD. Simulation of how Figure 32 may look for someone with CVD.

Example of output with
GRIDATTRS = (PATTERN = 4).

Example of output with
GRIDATTRS = (THICKNESS = 1pct).

8

Figure 12a: Example of an
OVERLAY layout option. [3]

Figure 12b: Example of a
GRIDDED layout option. [3]

Figure 12c: Example of a
DATALATTICE layout option. [3]

AXIS OPTIONS
Next, we will look at some of the options available within the layout section. While looking at the boxplots earlier we
covered the LAYOUT option xaxisopts = (OPTION), there is also the y-axis version yaxisopts = (OPTION). These
axis options will introduce a lot more flexibility into our figures.

GRIDDISPLAY = XX Main inputs for XX here is ON or OFF. This will specify whether the axis lines
are displayed.

GRIDATTRS = (XX = YY) Controls the style of the axis lines, if displayed. This follows the general rule
for attributes, which will be looked at momentarily.

LABEL = “XX” Specifies the axis label. Can either a string or work dynamically.
LABELATTRS = (XX = YY) Specifies the colour and font attributes of the axis label. Follows the general

rule for attributes, which will be looked at after.

TYPE = XX Specifies the type of axis wanted. Default is AUTO, which automatically

determines the axis type (best practice is to select the axis type manually).
Most of the time options LINEAR which uses the linear axis, and LOG which
uses the log axis are used. More are available.

Figure 13: On left is the AXIS OPTION code and on the right the description of each option.

Figure 14a: Example output with
GRIDDISPLAY = ON.

Figure 14b: Example output with LABEL =
“Label Text”.

Figure 14c: Example output
with TYPE = LOG.

STYLE OPTIONS
For attribute options, it will depend on the category it would fall into. There are several but we will look at the ones
covered. GRIDATTRS falls into Line Options, we can specify the lines colour, pattern, and thickness.

LINEATTRS = (COLOR = XX) Specifies colour. XX can be given as a valid colour name, such as
RED, or a colour code, such as CXFF0000 or #FF0000.

LINEATTRS = (PATTERN = XX) Specifies the line pattern. XX can be given as the pattern number or as
the pattern name (Solid, ShortDash, LongDash, etc.)

LINEATTRS = (THICKNESS = XX) Specifies the thickness of the line. XX must be given as the desired
thickness and the associated dimension (0.2in, 3mm, 10pct, etc.)

Figure 15: On left is the STYLE OPTION code and on the right the description of each option.

Commented [MD75]: Would ", more are available" be better

Figure 14

Example output with
GRIDDISPLAY = ON.

Example output with
LABEL = “Label Text”.

Example output with
TYPE = LOG.

5

SCATTER PLOT
A scatter plot is a type of graph that displays individual data points on a two-dimensional plane, often used to show
the relationship between two continuous variables. The data used for this example is the pre-packaged SAS® dataset
detailing car information from the SASHELP library within SAS®. It is a dataset listing models of car, and their
observed miles per gallon in a city (MPG_CITY), as well as their horsepower (HORSEPOWER), and body type
(TYPE).

Figure 5: Example code for a Scatter Plot, with notable sections highlighted.

Figure 6: The Scatter Plot generated from the provided code and data.

The code in Figure 5 is again, very similar to the example code we initially saw in Figure 1 and Figure 2, the
additions/modifications are highlighted. We will look at the modifications made that weren’t previously covered.

• (scatterplot) - specified that we will be using a scatter plot.
• (markerattrs) - opens the attributes for the markers used on the figure.
• (symbol = circlefilled) - swaps the symbol used for the markers out for a filled circle.

proc template;
 define statgraph scatter_template;

 begingraph;

 layout overlay;

 scatterplot x = horsepower y = mpg_city /
 group = type
 name = "scatter1"
 markerattrs = (symbol = circlefilled);

 discretelegend "scatter1" / title = "Car Body Type:";

 endlayout;

 endgraph;

 end;
run;

proc sgrender
 data = scatter_plot_data
 template = scatter_template;
run;

Commented [MM49]: Same as above should you add a
pager break so 'Scatter plot' subheader is on next page?

Commented [KM50R49]: Wanted a page break her, added it
in correctly now

Commented [CP51]: "A scatterplot is…"

Commented [CP52]: Would this read better for non-SAS
users as "The data used for this example is the pre-packaged
SAS® dataset detailing <failures data??> from the SASHELP
library within SAS®".

Commented [MD53]: their

Commented [MD54]: proc sgrender is modified but not
referenced

Commented [KM55R54]: Don't intend on pointing this
change out as it's been shown from figure 2 what inputs this
needs

Commented [CP56]: May be worth mentioning the fact you
have highlighted something in the figure.

Commented [MD57]: and Figure 2 for SGRENDER?

Commented [MD58]: Would "discrete legend" row also be a
"modification" or should be be Figure 3?

Commented [KM59R58]: As this was explained in figure 3
I don’t intend on explaining it again

Commented [CP60]: Same comment as above.

Figure 5

Example code for a Scatter Plot, with notable sections highlighted.

5

SCATTER PLOT
A scatter plot is a type of graph that displays individual data points on a two-dimensional plane, often used to show
the relationship between two continuous variables. The data used for this example is the pre-packaged SAS® dataset
detailing car information from the SASHELP library within SAS®. It is a dataset listing models of car, and their
observed miles per gallon in a city (MPG_CITY), as well as their horsepower (HORSEPOWER), and body type
(TYPE).

Figure 5: Example code for a Scatter Plot, with notable sections highlighted.

Figure 6: The Scatter Plot generated from the provided code and data.

The code in Figure 5 is again, very similar to the example code we initially saw in Figure 1 and Figure 2, the
additions/modifications are highlighted. We will look at the modifications made that weren’t previously covered.

• (scatterplot) - specified that we will be using a scatter plot.
• (markerattrs) - opens the attributes for the markers used on the figure.
• (symbol = circlefilled) - swaps the symbol used for the markers out for a filled circle.

proc template;
 define statgraph scatter_template;

 begingraph;

 layout overlay;

 scatterplot x = horsepower y = mpg_city /
 group = type
 name = "scatter1"
 markerattrs = (symbol = circlefilled);

 discretelegend "scatter1" / title = "Car Body Type:";

 endlayout;

 endgraph;

 end;
run;

proc sgrender
 data = scatter_plot_data
 template = scatter_template;
run;

Commented [MM49]: Same as above should you add a
pager break so 'Scatter plot' subheader is on next page?

Commented [KM50R49]: Wanted a page break her, added it
in correctly now

Commented [CP51]: "A scatterplot is…"

Commented [CP52]: Would this read better for non-SAS
users as "The data used for this example is the pre-packaged
SAS® dataset detailing <failures data??> from the SASHELP
library within SAS®".

Commented [MD53]: their

Commented [MD54]: proc sgrender is modified but not
referenced

Commented [KM55R54]: Don't intend on pointing this
change out as it's been shown from figure 2 what inputs this
needs

Commented [CP56]: May be worth mentioning the fact you
have highlighted something in the figure.

Commented [MD57]: and Figure 2 for SGRENDER?

Commented [MD58]: Would "discrete legend" row also be a
"modification" or should be be Figure 3?

Commented [KM59R58]: As this was explained in figure 3
I don’t intend on explaining it again

Commented [CP60]: Same comment as above.

Figure 6

The Scatter Plot generated from the provided code and data

2

may believe that tables are better at conveying critical information than figures. This misconception can influence the
decision to forgo figure development in favour of tables.

BASIC FIGURE CREATION
With the reasons covered in the previous section in mind, it now becomes clear that covering the basics of figure
creation (with examples) would be rather beneficial to many SAS® programmers. A more in-depth perspective can be
found on SAS®s documentation website [2].
Creating these figures in SAS® can be achieved by using multiple methods, such as the older lesser used PROC
GPLOT which relies on annotations, or with the more modern Graphic Template Language (GTL), which we will be
looking at.

GRAPHIC LANGUAGE TEMPLATE
GTL is a collection of procedures i.e., PROCs, we will use a combination of PROC TEMPLATE and PROC
SGRENDER however there are other procedures available under GTL (PROC SGPLOT, PROC SGBAR, etc.). We
will illustrate the use of the GTL procedures by creating some of the more commonly seen figure types.

PROC TEMPLATE
Within a PROC TEMPLATE procedure, there will be 4 sections to the figure structure.

Figure 1: Example code of a PROC TEMPLATE procedure, labelled numerically.

1. DEFINE STATGRAPH – This is required to open a definition block for defining and naming a graphics

template. The name should be a clear reflection of the figure (shown in Figure 1 as template_name).
2. BEGINGRAPH – This defines the outermost container for a graph template that is defined with GTL-

statements. All template definitions in the Graphics Template Language must start with a BEGINGRAPH
statement and end with an ENDGRAPH statement.

3. LAYOUT – Layout blocks always begin with the LAYOUT keyword followed by a keyword indicating the
purpose of the layout. All layout blocks end with an ENDLAYOUT statement. These statements function like
do/end blocks in SAS®.

4. PLOT – The Plot statement is where the desired plot type will be defined, this could be a SERIESPLOT,
SCATTERPLOT, BOXPLOT, etc. (these would replace the plot_type in Figure 1).

Each of the sections in the PROC TEMPLATE have options or statements that can be used to further customise the
figure to create the desired output. A basic output can be generated with no to minimal use of these options or
statements, so apart from ones that may be essential to producing an acceptable output, these will be covered in
more depth in the next section.

proc template;

 define statgraph template_name;

 begingraph;

 layout overlay;

 plot_type x = xvariable y = yvariable;

 endlayout;

 endgraph;

 end;

run;

1

2

3

4

Commented [CP22]: I think it would be worth stating here
that if a reader understands the process of figure creation they
can skip to "Accessibility"

Commented [MD23]: "SAS Programmers". Consistency

Commented [MD24]: Would this need the ® symbol?

Commented [MD25]: comma

Commented [MM26]: Does this read better with a comma
here after 'annotations'?

Commented [CP27]: Would an image of a graph annotated
with these four options be useful?

Commented [MD28]: Needs a ® Symbol

Commented [MD29]: Do you mean "plot_type" in the
section below?

Commented [MD30]: "none"

Commented [KM31R30]: Don't think this improves it

Commented [CP32]: Use of what? No / minimal use of the
sections above, the sections' options?

Commented [CP33]: Does this read well?

Commented [MM34]: Did you want a page break here or
should some of this blank space be removed?

Commented [KM35R34]: Wanted a page break otherwise
sections were getting a bit split up. Added it in properly now

Figure 1

Example code of a PROC TEMPLATE procedure, labelled numerically.

3

PROC SGRENDER
To use the newly made template to output a figure, a PROC SGRENDER procedure is used. This takes both the
template and the data we wish to use to create the figure. An example can be seen in Figure 2.

Figure 2: Example code of a PROC SGRENDER procedure.

First, the data that is to be used for the figure is defined (shown as figure_data). Then the template used for the figure
is defined (shown as template_name). These together will generate our figure in the output window.

PLOT TYPES
Now we have the basic layout of the code covered we will explore its implementation in the creation of certain types
of figures. Commonly used and fairly simple figures have been selected, such as series plots, scatter plots and bar
charts.

SERIES PLOT
A series plot is a type of graph that displays data points connected by lines, typically used to visualise trends or
patterns in sequential data. The data used for this example is the pre-packaged SAS® dataset detailing failures from
the SASHELP library within SAS®. It is a dataset with the count of causes of failure over five days across three failure
causes.

Figure 3: Example code for a Series Plot, with notable sections highlighted.

proc template;
 define statgraph series_template;

 begingraph;

 layout overlay;

 seriesplot x = day y = count / group = cause
 name = "series1";

 discretelegend "series1" / title = "Cause of Failure:";

 endlayout;

 endgraph;

 end;
run;

proc sgrender
 data = series_plot_data
 template = series_template;
run;

proc sgrender

data = figure_data

template = template_name;

run;

1

2

Commented [MD36]: comma

Commented [CP37]: "defined"

Commented [CP38]: "defined"

Commented [CP39]: This is where you could include
"...such as series plots, bar charts…."

Commented [CP40]: Replace this text with the definition of
a series plot. "A series plot is….."

Commented [CP41]: Would this read better for non-SAS
users as "The data used for this example is the pre-packaged
SAS® dataset detailing <failures data??> from the SASHELP
library within SAS®".

Commented [MD42]: proc sgrender is modified but not
referenced

Commented [KM43R42]: Don't intend on pointing this
change out as it's been shown from figure 2 what inputs this
needs

Commented [CP44]: May be worth mentioning the fact you
have highlighted something in the figure.

Figure 2

Example code of a PROC SGRENDER procedure.code.

GRIDDISPLAY = XX Main inputs for XX here is ON or OFF. This will specify whether the axis lines
are displayed.

GRIDATTRS = (XX = YY) Controls the style of the axis lines, if displayed. This follows the general rule
for attributes, which will be looked at momentarily.

LABEL = “XX” Specifies the axis label. Can either a string or work dynamically.
LABELATTRS = (XX = YY) Specifies the colour and font attributes of the axis label. Follows the general

rule for attributes, which will be looked at after.

TYPE = XX Specifies the type of axis wanted. Default is AUTO, which automatically
determines the axis type (best practice is to select the axis type manually).
Most of the time options LINEAR which uses the linear axis, and LOG which
uses the log axis are used. More are available.

Scan QR code to read full paper

